Flexible and Probabilistic Topology Tracking with Partial Optimal Transport
Mingzhe Li -
Xinyuan Yan -
Lin Yan -
Tom Needham -
Bei Wang -

Screen-reader Accessible PDF
Download preprint PDF
DOI: 10.1109/TVCG.2025.3561300
Room: Hall E2
Keywords
Probabilistic logic, Feature extraction, Vegetation, Topology, Probability distribution, Extraterrestrial measurements, Surveys, Visualization, Vectors, Reviews
Abstract
In this paper, we present a flexible and probabilistic framework for tracking topological features in time-varying scalar fields using merge trees and partial optimal transport. Merge trees are topological descriptors that record the evolution of connected components in the sublevel sets of scalar fields. We present a new technique for modeling and comparing merge trees using tools from partial optimal transport. In particular, we model a merge tree as a measure network, that is, a network equipped with a probability distribution, and define a notion of distance on the space of merge trees inspired by partial optimal transport. Such a distance offers a new and flexible perspective for encoding intrinsic and extrinsic information in the comparative measures of merge trees. More importantly, it gives rise to a partial matching between topological features in time-varying data, thus enabling flexible topology tracking for scientific simulations. Furthermore, such partial matching may be interpreted as probabilistic coupling between features at adjacent time steps, which gives rise to probabilistic tracking graphs. We derive a stability result for our distance and provide numerous experiments indicating the efficacy of our framework in extracting meaningful feature tracks.